7 SES Database
open the database SES_database_by_tokens.xlsx in excel or numbers (the database is about 26MByte, on a Mac choose rather Excel, the processing will be faster than in Numbers).
in general you would prefer e.g. OpenRefine instead of excel or numbers for best working with the table.
to filter the table rows for specific tokens, speakers etc: - open Daten > Filter - click the dropdown arrow in the column you want to filter in, e.g. p_speaker - deselect the „select all“ button (click on it; by default its selected with a häkchen) - now there should be no häkchen in any square/button - select e.g. the speaker you want to filter for / häkchen setzen - apply filter - you can apply several filters at once to limit concordance to language of interview or age or whatever limitation you want - if you want to filter in the token column, you can put in/search for a free text token and then select what matches your search - if you want to turn filters off you have to be again in the dropdown filter option of the column and remove the filter there, > filter entfernen
7.1 columns explained
column | explanation | example |
---|---|---|
p_interview | transcript | GCA |
p_speaker | speaker | #GCA |
p_token | token | Mach |
p_lemma_SkE | sketch engine lemma | machen-v |
p_lemma | only the lemma | machen |
p_turn | turn, sentence | #GCA : 43 Mach ich die Arbeit die Schule c_NPV . |
p_turn_preceding | the preceding turn | #INT : 42 ( activities_after_school ) was machst du nach der Schule , wenn du nicht hier bist ? |
p_transcriptLine | transcript line of the token | 43 |
m_feature_eval | empty evaluation column for your researches. you can use this as a selector for finding by turning it TRUE or FALSE | FALSCH |
m_free_col | empty evaluation column for your researches. you can use this as a selector for finding by turning it TRUE or FALSE | 0 |
t_tag_SkE | full german RFTag. the following columns seperate this tag into the single items | VIMP.Full.2.Sg |
t_PoS_ok | selector to switch if the tag is correct | 1 |
t_PoS | PartOfSpeech | VIMP |
t_category | NA | Full |
t_funct | NA | - |
t_case | NA | - |
t_pers | NA | 2 |
t_num | NA | Sg |
t_gender | NA | - |
t_tense | NA | - |
t_mode | NA | - |
part_L1 | participant L1 | G |
part_sex | participant sex | f |
part_age | participant age | 8 |
part_CoB | participant contry of birth | Greece |
part_YiG | participant years in germany | 0.5 |
part_YoSH | particiant years of school in heritage country | 0 |
part_LPM | participant language proficiency mother | kann deutsch |
part_LPF | participant language proficiency father | kann deutsch |
part_LUM | participant language use mother | greek |
part_LUF | participant language use father | greek |
part_LUS | participant language use siblings | greek |
part_LUFR | participant language use friends | N.A. |
c_NSM | nonstandard semantics | 0 |
c_PAU | pause | 0 |
c_NPV | nonstandard possessive | 1 |
c_NNS | nonstandard not specified | 0 |
c_NPR | nonstandard preposition | 0 |
c_NAG | nonstandard agreement | 0 |
c_0MD | zero modal | 0 |
c_0SU | zero subject | 0 |
c_NWO | nonstandard word order | 0 |
c_0OB | zero object | 0 |
c_0PR | zero preposition | 0 |
c_COM | comment | 0 |
c_NCM | nonstandard comparison | 0 |
c_0AR | zero article | 0 |
c_NVP | nonstandard VP | 0 |
c_0VP | zero VP | 0 |
c_NGN | nonstandard gender | 0 |
c_0AU | zero auxiliary | 0 |
c_0CP | zero copula | 0 |
c_NEX | nonstandard existential | 0 |
c_NRL | nonstandard relative | 0 |
c_NAR | nonstandard article | 0 |
c_NMD | nonstandard modal | 0 |
c_0PT | zero predicate | 0 |
c_NPE | nonstandard person | 0 |
c_0RF | zero reflexive | 0 |
c_NIO | nonstandard i.o. | 0 |
c_NPS | nonstandard person | 0 |
c_0PN | zero plural/numeral | 0 |
c_NPO | nonstandard pronoun | 0 |
c_0RL | zero relative | 0 |
c_0EX | zero existential | 0 |
c_NNN | nonstandard not specified | 0 |
c_NCP | nonstandard copula | 0 |
c_0RP | zero reflexive pronoun | 0 |
c_0PD | zero predicate | 0 |
c_NVC | nonstandard vocab | 0 |
c_NEA | nonstandard extra article | 0 |
c_NCN | nonstandard conditional | 0 |