7 SES Database

open the database SES_database_by_tokens.xlsx in excel or numbers (the database is about 26MByte, on a Mac choose rather Excel, the processing will be faster than in Numbers).
in general you would prefer e.g. OpenRefine instead of excel or numbers for best working with the table.

to filter the table rows for specific tokens, speakers etc: - open Daten > Filter - click the dropdown arrow in the column you want to filter in, e.g. p_speaker - deselect the „select all“ button (click on it; by default its selected with a häkchen) - now there should be no häkchen in any square/button - select e.g. the speaker you want to filter for / häkchen setzen - apply filter - you can apply several filters at once to limit concordance to language of interview or age or whatever limitation you want - if you want to filter in the token column, you can put in/search for a free text token and then select what matches your search - if you want to turn filters off you have to be again in the dropdown filter option of the column and remove the filter there, > filter entfernen

7.1 columns explained

column explanation example
p_interview transcript GCA
p_speaker speaker #GCA
p_token token Mach
p_lemma_SkE sketch engine lemma machen-v
p_lemma only the lemma machen
p_turn turn, sentence #GCA : 43 Mach ich die Arbeit die Schule c_NPV .
p_turn_preceding the preceding turn #INT : 42 ( activities_after_school ) was machst du nach der Schule , wenn du nicht hier bist ?
p_transcriptLine transcript line of the token 43
m_feature_eval empty evaluation column for your researches. you can use this as a selector for finding by turning it TRUE or FALSE FALSCH
m_free_col empty evaluation column for your researches. you can use this as a selector for finding by turning it TRUE or FALSE 0
t_tag_SkE full german RFTag. the following columns seperate this tag into the single items VIMP.Full.2.Sg
t_PoS_ok selector to switch if the tag is correct 1
t_PoS PartOfSpeech VIMP
t_category NA Full
t_funct NA -
t_case NA -
t_pers NA 2
t_num NA Sg
t_gender NA -
t_tense NA -
t_mode NA -
part_L1 participant L1 G
part_sex participant sex f
part_age participant age 8
part_CoB participant contry of birth Greece
part_YiG participant years in germany 0.5
part_YoSH particiant years of school in heritage country 0
part_LPM participant language proficiency mother kann deutsch
part_LPF participant language proficiency father kann deutsch
part_LUM participant language use mother greek
part_LUF participant language use father greek
part_LUS participant language use siblings greek
part_LUFR participant language use friends N.A.
c_NSM nonstandard semantics 0
c_PAU pause 0
c_NPV nonstandard possessive 1
c_NNS nonstandard not specified 0
c_NPR nonstandard preposition 0
c_NAG nonstandard agreement 0
c_0MD zero modal 0
c_0SU zero subject 0
c_NWO nonstandard word order 0
c_0OB zero object 0
c_0PR zero preposition 0
c_COM comment 0
c_NCM nonstandard comparison 0
c_0AR zero article 0
c_NVP nonstandard VP 0
c_0VP zero VP 0
c_NGN nonstandard gender 0
c_0AU zero auxiliary 0
c_0CP zero copula 0
c_NEX nonstandard existential 0
c_NRL nonstandard relative 0
c_NAR nonstandard article 0
c_NMD nonstandard modal 0
c_0PT zero predicate 0
c_NPE nonstandard person 0
c_0RF zero reflexive 0
c_NIO nonstandard i.o. 0
c_NPS nonstandard person 0
c_0PN zero plural/numeral 0
c_NPO nonstandard pronoun 0
c_0RL zero relative 0
c_0EX zero existential 0
c_NNN nonstandard not specified 0
c_NCP nonstandard copula 0
c_0RP zero reflexive pronoun 0
c_0PD zero predicate 0
c_NVC nonstandard vocab 0
c_NEA nonstandard extra article 0
c_NCN nonstandard conditional 0

7.2 summary

as you see in above table, theres a lot of possible filtering options working with the SES database.
you can do simple queries for token, lemma or PoS tag or refine your query applying filters to metadata or coded features as well.